loading-spinner
AI, Insurtech, IoT

Humans and machines should be colleagues, not competitors

Given that it was recently International Workers Day, and given the recent and continuing hype around technologies such as artificial intelligence and, in particular, machine learning, we thought we’d consider the role of these technologies in the work place and their relationship with the Internet of Things. 

In January of this year, 32 employees of Japanese Life Insurer, Fukoko Mutual, lost their jobs because their employer had installed a new “artificial intelligence system”. According to The Guardian, “Fukoku Mutual Life Insurance believes it will increase productivity by 30% and see a return on its investment in less than two years. The firm said it would save about 140m yen (£1m) a year after the 200m yen (£1.4m) AI system is installed this month. Maintaining it will cost about 15m yen (£100k) a year.”

This is interesting, and unnerving at the same time. The system, based on IBM’s Watson Explorer, is said to be able to possess “cognitive technology that can think like a human” and is being used to process structured (think payment information) and unstructured (think images and video) information. For the 32 employees of Fukoku it is obviously an unwelcome development, and indeed, some estimates anticipate that up to half of all jobs in Japan will be performed by robots by 2035. 

Yet in a world of increasing connectivity, where huge amounts of data are being created daily, it is worth bearing the positives in mind. Put simply, human beings can only process so much information before we reach the limits of our cognitive potential. At this point, our brains are unable to draw meaningful conclusions from the information before our eyes, and as a result, we are unable to make intelligent decisions off of this data. For decades now, we have relied on computers to help us make sense of large volumes of information - an obvious example being the calculator. But what happens when an insurance or financial organisation is faced with 3 million lines of unstructured data from the Internet of Things? How to make sense of it all? 

Perhaps a better place to start is to ask another question: why would they want to make sense of this data? There may be many answers to this question, but one of the most pertinent reasons has to do with behaviour. As the things in our world (cars, buildings, ships, factories, planes etc) become connected, the data they produce tells us a story about their behaviour - where they go, how fast they travel, how well they perform, any faults that develop. And this behavioural insight is gold dust. To an operator or owner it represents performance and bottom line (profit margins and efficiency), or at its most basic level, ensuring the ‘thing’ is still in working order. To an insurer it can represent risk, loss and the means of preventing them.

Yet information of this kind, such as complex time series data, cannot be processed without the help of computers and algorithmic technology. Machine learning algorithms that identify patterns of risk can help to turn this new insight into automated business process (and the decisions made therein). If you wish to know when your on-shore and off-shore aggregated exposure reaches a certain limit within the port area of Tianjin, an automated alert can be set. And there would be no sense in employing a human to carry out that task - as well as being extremely time consuming, it would also be mind numbingly boring. Imagine being sent one-thousand emails a day and trying to make sense of them all, sorting the valuable ones from those that waste your time - you’d need a filter to help spend less time sorting through them and more time engaging with the people who sent them. AI provides that filter.

Similar use cases can be seen elsewhere. In healthcare, neural networks can be trained to diagnose patients using visual information and pattern recognition (for example, eye scan images). In manufacturing, organisations such as Nanotronics Imaging use software and imaging technology to detect nanoscale defaults in silicon wafer chips, thus removing defective products from the production line - something that would otherwise require constant human vigilance (as well as the inevitable human mistakes).

Yet humans still possess a level of creativity that machines have yet to master, and it is this combination of skills that represents huge future potential. Known as ‘Augmented Intelligence’ it combines the heavy lifting processing power of computers (the drudgery) with free thinking, personable, human creativity. In this scenario, humans are free to pursue other areas of work, investing more time with customers, exploring new areas of business, and more. In the example of insurance, staff can use ML to accurately calculate risk at the click of a button, receiving automated alerts before large losses are likely to occur and engaging in more data-driven conversations (and stronger relationships) with their customers. As Disruption magazine stated this month, AI powered systems can free up “far more of each day to spend with clients and team members in order to provide better, more tailored services.”

So the level of disruption caused by IoT, AI and ML in changing corporate environments really depends on the organisation itself. Business processes (and the models behind them) will shift and job roles will need to adapt to take full advantage of these changes. Managerial prudence and improvisation will be required to help steer companies through a changing environment, and those that do this well will reap the benefits.

Finally, consideration must be given to how AI systems learn over time. As humans we come to learn that sometimes new information trumps or overrides all previous knowledge. Learning in this way can shift paradigms of perception and change the way we act and think. AI systems will need to be able to do this in order to become truly useful within a working environment. The same goes for heuristics (rules of thumb), such as guidelines for commercially sensitive decisions and pricing for customers. “I’m going to give them a discount this time, because they’ve been a good customer”. Humans, it seems, still have a role to play.

By: Andrew Yeoman

Andrew is CEO and Co-founder of Concirrus

1st Jun, 2017